The Role of Radiation Therapy for Hepatocellular Carcinoma

Stephen Wan Leung
Department of Radiation Oncology
Yuan’s General Hospital
Anatomic and Physiologic Considerations

Fig. 1. Normal anatomy of a human hepatic lobule. This diagram depicts a radial segment of a lobule, the center of which is the central vein shown to the right. The periphery corresponds to the portal area in the left. The plates of liver cells are indicated in dark gray, and the sinusoids that run from the portal vein to the central vein are the white spaces between liver cell plates. The acinar zones 1, 2, and 3 divide the parenchyma of the lobule into concentrical regions. The endothelial lining of sinusoids is shown in Fig. 2.
Fig. 2. Detail of normal liver parenchyma at high magnification. The cuboidal hepatocytes form anastomosing plates separated from each other by sinusoids. The latter are lined by endothelial cells interspaced among which are Kupffer cells. The bile canaliculi are spaces delimited by the liver cells' plasma membrane, which forms microvilli. Between the liver cells and the endothelium (which does not have a basement membrane) is the narrow Disse space.
Tolerance of Liver to Radiation

- Liver is a relatively radiosensitive organ.
- The major sensitive part is the small blood vessels which show sinusoidal congestion, hyperemia, loss of central hepatic cells and endothelium. Later on fatty vacuolization, fibrosis and atrophy change.
- Hepatocytes are relatively radioresistance. They are in low mitosis rate.
- Usually, radiation response can be observed on 2-6 weeks after complement of the irradiation.
Pathophysiology

• Common pathological lesion associated with the clinical syndromes of RILD (Radiation Induced Liver Disease)
 – “VOD” Veno-occlusive disease
 • Areas of marked congestion which involve chiefly the central portion of each lobule.
 • Foci of yellow necrosis.
 • If the lesion involves large areas of the liver such as an entire lobe, it may produce marked decrease in size with a wrinkled or granular capsule.
The tolerance of radiation:

<table>
<thead>
<tr>
<th></th>
<th>1/3 Volume</th>
<th>2/3 Volume</th>
<th>Whole organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>50</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Kidney</td>
<td>50</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Bowels</td>
<td>50</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>50</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>Lungs</td>
<td>45</td>
<td>30</td>
<td>18</td>
</tr>
</tbody>
</table>

Unit: Gy
The Salvage Treatment for Hepatocellular Carcinoma with Portal Vein Thrombosis by 3-Dimensional Conformal Radiation Therapy
Introduction (I)

• Hepatocellular carcinoma (HCC) is the leading cause of death for the malignant neoplasm in Taiwan.
• Less than 15% of the cases have the indications for surgical treatment at the initial diagnoses for HCC.
• The rest of the cases are gone for trans-arterial embolization (TAE) or percutaneous ethanol injection (PEI).
• However, in the situation of HCC with portal vein thrombosis, the outcome is extremely poor. The one-year survival is zero for those patients.
Incidence of PVT in Hepatoma Patients

- Sarrat et al (USA) 23 %
- Edmondson et al (USA) 33.8 %
- Nakashima et al (Japan) 64 %
- Lai et al (Taiwan, NTUH) 62.5 %
- VGH (Taiwan) 56 %
- KMUH (Taiwan) 56.7 %
Incidence of PVT in non-malignant liver disease

- Okuda et al Japan 0.573%
- KMUH Taiwan 0.3%
Chen et al in KMUH
96 non-treated hepatoma patients

<table>
<thead>
<tr>
<th>Ave. survive (Days)</th>
<th>6 Months</th>
<th>12 Months</th>
<th>18 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 PVT (-)</td>
<td>206</td>
<td>36%</td>
<td>22%</td>
</tr>
<tr>
<td>67 PVT (+)</td>
<td>48</td>
<td>4%</td>
<td>0%</td>
</tr>
</tbody>
</table>
The causing factors for PVT (multiple variant analysis)

- Tumor size (≦ 5cm, 5~10cm, >10cm)
- AFP (≦ 20, 20~40cm, >400)
- Single, multiple and diffuse
Introduction (II)

• The innovation technique of 3-dimensional conformal radiation therapy (3D-CRT) has been used for irradiating the occlusion part of portal vein in order to get the patent of venous blood flow. Later on, TAE can be done for these patients.

• 3D-CRT can treat the occlusion part of portal vein or inferior vena cava with the conforming technique in order to avoid the large amount of normal liver tissue inside the irradiated field.
Introduction (III)

• The rule of thumb for liver irradiation
 – Whole liver---------------- 25-30 Gy
 – Half liver------------------ 40-45 Gy
 – One third of liver------ 50-60 Gy
 – # 10 to 20% dose cut down for the cirrhotic liver and diffused HCC
Materials and Methods (I)

• Treatment planning system: ADAC Pinnacle
• Varian 2100C/D Linear Accelerator: 15 MV X-ray
• Multi-leaf collimator for fields shaping
• Protocol dose: 250 cGy/fr, 5500 cGy/ 22 fr within 5 weeks
• Radiation therapy for PV thrombotic area only: usually 1 to 2 cm safe margin
 Radiation therapy for PVT and primary tumor: usually 0.5-1.5 cm safe margin
• 3-5 treatment fields were planned, evaluated by Dose-Volume Histogram
Materials and Methods (II)

• Minimal one year follow-up for 100 patients
• Liver echogram, CT scan or Liver angiography proved PVT or IVC occlusion
• Liver echogram or CT scan was repeated one month after radiation therapy
• Liver function had been checked before, during and after RT
• Post-RT TAE was considered for primary liver tumors if PV flow resumed
Materials and Methods (III)

• Radiation therapy for PVT only: 72
 – Dose: 5500 cGy/22 fr

• Radiation therapy for PVT and arterioportal shunting: 7
 – Dose: 5500 cGy/22 fr

• Radiation therapy for PVT and primary tumors: 21
 – Dose: 5600-6400 cGy/28-30 fr: 16
 – Dose: 5500 cGy/22 fr: 5
Results (I) -- Patient’s characteristics

• From February 1997 to January 1999, 100 HCC with portal vein thrombosis (PVT) patients were treated by 3D-CRT
• Median age: 57 y/o (range 33 to 82 y/o)
• M: F=73:27
• Pathology proved for HCC: 56
 – High AFP: 47 (>400)
 – Moderate high AFP: 23 (20-400)
 – Images diagnosis: 11
• One or more times TAE before R/T: 68
• Thrombotic area distributions:
 – Whole PV: 14
 – IVC: 9
 – Right PV: 32
 – Combined: 22
 – Left PV: 26
 – Main PV: 11
• Combined arterioportal shunting: 7
• Ascites (+): 31
Results (II)

- Portal vein status one month after 3D-CRT
 - Resumed portal flow completely: 31/100 (31%)
 - Resumed portal flow partially: 44/100 (44%)
 - No response: 25/100 (25%)
- Arterioportal shunting disappear: 3/7
- TAE had been performed after 3D-CRT: 42/75 (56%)
Results (III)

• 6 months survival after 3D-CRT:
 – 51/100 (51 %)

• 12 months survival after 3D-CRT:
 – 28/100 (28%)

• 18 months survival after 3D-CRT:
 – 15/100 (15%)
2-year survival of hepatoma patients with PVT treated with conformal radiation therapy
Discussion

• According to the survival report of non-treated HCC patients with PVT from Kaohsiung Medical University, the 6 months survival was 4% and 12 months survival was 0%.

• Salvage treatment with 3-D CRT for HCC with PVT showed 75% resumed rate for portal venous blood flow. Subsequent TAE or PEI can be done to control the progression of the primary tumors.
Discussion

• Prolong survival by the 3D-CRT was also seen for this group of patients.
• Limited side effects with good tolerance for most of the patients received this salvage treatment.
Preliminary Results of 3-Dimensional Conformal Radiotherapy for Hepatocellular Carcinoma with Portal Vein Thrombosis-----Wei-Chung Hsu, Chin J Radiol 2002; 27:59-66

24 HCC patients with PVT were treated with 3D-CRT
Mean age: 54.1 y/o, (range from 30-73 y/o)
Dose: 1.8-2 Gy/ fr, total dose range from 43.2- 75 Gy)
Results: response rate:63% (15/24)
6 months survival rate:72 %
1 year survival rate:55.4%
#Cox’s regression model analyzed the factors affecting the prognosis
 Treatment dose, Treatment volume
 Intrahepatic or extrahepatic involvement
Case report
Conformal radiation therapy for hepatoma with portal vein thrombosis

1S W LEUNG, MD, MS, 1E Y HUANG, MD, 2Y F CHENG, MD and 3S N LU, MD, PhD

Chang Gung Memorial Hospital-Kaohsiung, Chang Gung Medical College, Departments of
Radiation Oncology, 2Radiology and 3Hepatobiliary, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung Hsien, Taiwan
Figure 1. Coeliac angiography before radiotherapy showing hypervascular tumours with tumour vessels and marked contrast in the tumour of the left lobe of the liver. Abnormal hepatic arterioporal shunting is noted in the early arterial phase. Tumour thrombus inside the right portal vein is also seen.
Figure 3. Coeliac angiography 4 weeks after radiotherapy shows absence of the tumour vessels and contrast in the left lobe of the liver. No arterioportal shunting is found.
Clinical Syndromes – Subacute RILD

- RILD typically occurs 4-8 weeks after the completion of treatment, although it had been described as early as 2 weeks and as late as 7 months.
- Rarely jaundiced at presentation.
- Physical examination reveals ascites and hepatomegaly in moderate to severe cases.
- Serum chemistries tend to show moderate elevations of AST and ALT. (In the range of two-fold above normal).
- Minimal or no increase in bilirubin.
- Substantial rise in alkaline phosphatase (in the range of 3-10 times above normal)
Innovation R/T Technique for Liver Treatment

- Conformal Radiotherapy
- Intensity Modulation Radiotherapy
- Ultrasound Guide Radiotherapy
- Active Breathing Control
Three Dimensional Conformal Radiotherapy
三度空間順形放射治療

其藉由精密的電腦硬體及軟體設備，順著腫瘤形狀設計出治療照野，能有效阻擋正常組織接受過高之劑量，降低副作用的產生，並進一步提高腫瘤劑量，增加局部控制率。
Multi-Leaf Collimator (MLC)

多葉式準直儀
Treatment Planning

Dose-Volume Histogram:
is used to describe the integral
volume of the target and specific
normal organs at a function of dose
Dose Volume Histogram
The tolerance of radiation:

<table>
<thead>
<tr>
<th></th>
<th>1/3 Volume</th>
<th>2/3 volume</th>
<th>Whole organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>50</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Kidney</td>
<td>50</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Bowels</td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Spinal cord</td>
<td>50</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>Lungs</td>
<td>45</td>
<td>30</td>
<td>18</td>
</tr>
</tbody>
</table>

Unit: Gy
Intensity Modulation Radiation Therapy

IMRT
強度調控放射治療

• IMRT是一種最先進的放射治療技術，可多方向照射，並由電腦調控射線強度，使腫瘤接受較高劑量，減少正常組織的輻射傷害。
3-D Tissue compensator:

Classic, 3-D, manual tissue compensator
MLC

Leaf pair #1

Step by step

Leaf pair #2
Ultrasound guided Radiotherapy
Optically Guided Ultrasound for Extracranial Radiosurgery System

Description

- 3D ultrasound guidance
- Inexpensive
- Flexible
- High resolution imaging modality
- Real time
Optically Guided Ultrasound for Extracranial Radiosurgery System

Description

• To generate 3D ultrasound data sets through optical tracking of free-hand acquired 2D ultrasound data
• 2D data are transferred to a computer workstation using a standard video link
• 4 infrared light-emitting diodes (IRLEDs) attached to the probe for determined the orientation of the probe
• CCD cameras are used to determine the positions of the IRLEDs
• Ultrasound pixel and volume can be determined and reconstructed.
Optically Guided Ultrasound for Extracranial Radiosurgery System Description

• The probe position coordinate system at the time of data acquisition is sufficient to determine the position of the image volume relative to the linac isocenter.

• The determination of the relative position of the image and probe corresponds to a calibration step that is performed at the time of system installation.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>-2.0</td>
<td>absolute</td>
</tr>
<tr>
<td>LAT</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>AX</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Vector</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Couch</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>Tilt</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Spin</td>
<td>-4.3</td>
<td></td>
</tr>
</tbody>
</table>
Active Breathing Control (ABC)
Uncertainty from Breathing Motion

- Clinical Need:
 - Organs and tumours in the thorax and abdomen are known to move by more than 2 cm during the breathing cycle.
 - Wide treatment margins are therefore used, irradiating a large volume of critical tissue, and inevitably limiting the dose that can be delivered to the tumor.
Uncertainty from Breathing Motion

• Margins accommodate organ movement caused by breathing and assure target coverage, but irradiate more normal tissue.
• Breathing motion is a potential obstacle to the use of IMRT for disease in the thorax and abdomen.
• Other strategies for dealing with breathing motion:
 – Treatment beam on/off with respiratory signal (gating).
 – Voluntary, deep inspiration breath-hold (DIBH)
 • Unpredictable. Same for CT as for treatment?
 – Active breathing control (ABC).
Conformal Therapy
Active Breathing Control (ABC)

Flat panel monitor

“Corner” Mirror
Conformal Therapy
Active Breathing Control (ABC)

Courtesy of WBH
Active Breathing Control

Flow

Lung Volume

ABC

10 seconds
Mock Gall Bladder Treatment: Range of Liver DVHs

ABC Free breathing
HCC in Some Situations managed by Radiation Therapy

- Severe liver cirrhosis with ascites
- After many times PEIT, tumor still progress
- Liver hilar LNs enlargement
- Tumors locate at S1 and S4
- Huge tumor
- Palliative treatment for bone or brain metastasis
Before treatment | Treatment plan | 2.5 months later
Huge HCC after RT

Post operation
The Effect of Concurrent Radiotherapy and Oral UFUR for Hepatoma
Chemopotentiation

- Modify the structure of DNA in such a way as to make it more sensitive to the action of radiation
- Inhibit the repair of sublethal damage produced by radiation
- Inhibit DNA synthesis
Antimetabolite agent

- 5-FU, a structure analogue of the DNA precursor thymine
- It works primarily as an irreversible inhibitor of the enzyme thymidylate synthelase
Cases Selection

- Performance Status: >70
- Age:<70
- WBC>4000
- GOT, GPT: limit within 3 times to normal value
- No jaundice
- Most of the tumor or PVT area can be treated within one radiation field, the dose-volume histogram show less than one half of the normal liver received 50% of prescribed dose
Radiation Dose

- 10 or 15 MV X-ray
- Dose: 250 cGy/ fr for 5500 cGy/ 22 fr or
 200 cGy/ fr for 6400 cGy/ 32 fr
- ADAC Pinnacle treatment planning system—for 3-D conformal technique plan
UFUR

- Oral form---easy to carry on
- 2 tablets BID from day 1 to the end of R/T, at least CCRT for 4 weeks
- CBC and LFT before CCRT, at dose around 3000 cGy, and at the end of CCRT
Conclusions

• Modern technology of radiotherapy can achieve precision targeted radiation dose to hepatoma and limit the damage of the adjacent normal tissues.

• Combined modalities treatment is the trend for hepatoma management in order to obtain better tumor control, good life quality and prolong survival for the patients.
光子刀療法

BID雙殺 肝癌細胞死光光

一天兩回爭取時間差 讓正常細胞回復生息 存活率提高3成 8成患者肝癌完全消失

盧金足／台中報導

肝癌十多天會長大一倍，殺死肝癌難和時間賽跑！台中慈濟醫院和台大醫院合作，研發成功最新的「BID肝癌光子刀治療法」，採取時間差快擊法，一天兩次光子刀殺死肝癌細胞，首批接受治療的患者，有高達八十二％的存活率，六成患者體內肝癌完全消失，創下國內罕見的肝癌存活率。慈濟醫院光子刀治療中心主任盧金足表示，新療法BID，可以雙重打擊肝癌，殺肝癌者最大的殺手，尤其對於年齡小於五十歲的肝癌，療效更佳。BID光子刀治療法的原理是利用肝癌細胞繁殖生長速度極快的特點，使用紅外線等離子光子刀，每天上下午各給予一次治療，因為細胞DNA上午受第二光子刀打擊後，在六到八小時DNA又再次受到第三光子刀打擊，對癌細胞造成極大破壞力。因光子刀治療更大的殺傷力，也因為中間隔六到八小時之開的休息，正常肝細胞得以順利修復，將正常組織的傷害降至最低。慈濟醫院表示，經過一年來治療，首批十八名接受BID光子刀療法的患者，有八十二％的存活率，其中有近六成的患者體內細胞完全消失，整體來說，存活率較傳統光子刀治療提高三成以上。患者可就近到台大或慈濟諮詢，看是否適用於此療法。
優質的醫療

設備

技術

品管
Before treatment Treatment plan 7 months later
<table>
<thead>
<tr>
<th>CHART</th>
<th>STATUS</th>
<th>R/TDATE</th>
<th>COMP</th>
<th>cGy</th>
<th>WK</th>
<th>NAU</th>
<th>VOM</th>
<th>WBC</th>
<th>LFT</th>
<th>IMAGES</th>
<th>F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>5655146</td>
<td>RPVT</td>
<td>2001/6/11</td>
<td>2001/7/26</td>
<td>6600</td>
<td>6</td>
<td>MILD</td>
<td>N</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
<tr>
<td>6907829</td>
<td>LPVT</td>
<td>2001/5/15</td>
<td>2001/6/28</td>
<td>6400</td>
<td>2</td>
<td>P</td>
<td>P</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
<tr>
<td>5435757</td>
<td>RPVT</td>
<td>2001/6/28</td>
<td>2001/6/28</td>
<td>6400</td>
<td>2</td>
<td>P</td>
<td>P</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
<tr>
<td>5260781</td>
<td>WPVT</td>
<td>2001/9/17</td>
<td>2001/11/3</td>
<td>6400</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>DEC</td>
<td>WNL</td>
<td>F/U</td>
<td></td>
</tr>
<tr>
<td>5672114</td>
<td>WPVT</td>
<td>2001/9/17</td>
<td>2001/11/3</td>
<td>6400</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>DEC</td>
<td>WNL</td>
<td>F/U</td>
<td></td>
</tr>
<tr>
<td>6260781</td>
<td>WPVT</td>
<td>2001/9/17</td>
<td>2001/11/3</td>
<td>6400</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>DEC</td>
<td>WNL</td>
<td>F/U</td>
<td></td>
</tr>
<tr>
<td>5672114</td>
<td>WPVT</td>
<td>2001/9/17</td>
<td>2001/11/3</td>
<td>6400</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>DEC</td>
<td>WNL</td>
<td>F/U</td>
<td></td>
</tr>
<tr>
<td>5435757</td>
<td>RPVT</td>
<td>2001/6/28</td>
<td>2001/6/28</td>
<td>6400</td>
<td>2</td>
<td>P</td>
<td>P</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
<tr>
<td>5655146</td>
<td>RPVT</td>
<td>2001/6/11</td>
<td>2001/7/26</td>
<td>6600</td>
<td>6</td>
<td>MILD</td>
<td>N</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
<tr>
<td>6907829</td>
<td>LPVT</td>
<td>2001/5/15</td>
<td>2001/6/28</td>
<td>6400</td>
<td>2</td>
<td>P</td>
<td>P</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
<tr>
<td>5435757</td>
<td>RPVT</td>
<td>2001/6/28</td>
<td>2001/6/28</td>
<td>6400</td>
<td>2</td>
<td>P</td>
<td>P</td>
<td>WNL</td>
<td>WNL</td>
<td>PARTIAL</td>
<td></td>
</tr>
</tbody>
</table>

Patients’ Data
Target Definition
Beam Arrangement
Isodose Curve Distribution
Dose Volume Histogram